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Likewise, the elimination of the noise of the refine- 
' m e n t  of the mean structure from the A matrix may 

be performed in a similar manner as before. 
The pseudosymmetry operator which gives high co- 

variance between parameters need not always allow a 
sensible selection of combination of parameters. An 
example is the pseudosymmetry operators (-}+x, y, 
k - z ) ,  (2-+x, y, ~--z). A refinement procedure for a 
crystal structure with these pseudosymmetry operators 
is currently being investigated, and will be published 
elsewhere. 

We have seen earlier that a full-matrix solution tends 
to overweight the changes in the 'difference' structure 
whereas a block diagonal approach overweights the 
changes in the 'mean' structure but underweights the 
'difference' structure, and so other refinement proce- 
dures may be considered. 

As .,tated in the Introduction, the refinement of the 
'difference' structure is only possible as (sin 0)/2 in- 
creases. Thus the simplest method to reduce covariance 
between highly covarying parameters is to use high- 
angle data or to weight data according to (sin 0)/2. 
Similarly, if there is an index condition so that only 
the 'difference' structure contributes to certain re- 
flexions then the weight of these reflexions can be in- 
creased. 

A combination of a full-matrix approach and a 
diagonal approach can be considered. This is simply 
brought about by multiplying the diagonal elements 
au of the A matrix by a constant, kl, greatei than 1, 
and the elements of the column matrix B by a constant 
k2. The constant kz should be less than kl, otherwise 

the refinement of the 'mean' structure will be over- 
weighted. A down weighting of the refinement of the 
'difference' structure is brought about by a reduction 
of the apparent covariance between parameters. The 
shifts of highly covarying parameters are reduced 
more than the shifts in parameters which are less co- 
variant. A read-out/read-in interruption to the least- 
squares refinement program prior to the inversion of 
the A matrix allows any number of modifications to 
be tested without re-evaluating the A matrix each time. 

This final method has a lot to recommend it. Con- 
sider our simple two-variable example again. The 
equation 

P 

becomes 

kl V~nAul-  fl ? =601/~-]-0)27 
kz 2 - 6 '  + -~ 

where 
1 - 6 ' = k f  -1(1-~) ; k ~ > l .  

~'/~ varies from eo for 6 = 0 to 1 for 6 = 1. Also ( 2 -  6)1~ 
varies from ,2 for ~ = 0 to 1 for ~ = 1, whereas o)zlo)l = 
(2-3 ' ) /6 '  varies from (kl + 1)/(kl-  1) for ~ = 0 to 1 for 
6=1.  

Thus we have a built-in discrimination against those 
parameters of the 'difference' structure which are least 
accurately determined. If we choose kl as 1.4 say, then 
COz/O91 varies between 6 and 1. This procedure will also 
work when a larger set of covarying variables is con- 
sidered. 
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Phase relations between quartets of reflexions can be found either directly from a generalized Hughes 
expression or by elimination of the phase of a reflexion common to two Y2 relationships. By combining 
the information from both types, strengthened quartet relationships (SQR) can be constructed, which 
are comparable to the Y z relations in reliability and number. Most of the reliable SQR's involve the 
strong reflexions only. The phases of these reflexions are related by a highly overdetermined system of 
equations leading in a simple manner to a good starting set. 

List of symbols 

F(H) Structure factor of reflexion H 
En Normalized structure factor 
Un Unitary structure factor 

f Atomic scattering factor 

g Scattering factor of the squared electron den- 
sity of an atom 

N Number of atoms in the unit cell 
V Volume of the unit cell 
S(H) The sign of reflexion H 
~0n The phase of re flexion H 
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Introduct ion 

F o r  s t r u c t u r e s  c o n t a i n i n g  b u t  o n e  k i n d  o f  a t o m  S a y r e  
(1952) d e r i v e d  t h e  e x p r e s s i o n  

g F ( H ) =  1 F ( H ' ) F ( H -  H') . (1) 
7 T 

H u g h e s  (1953) f o u n d  t h e  r e l a t e d  f o r m u l a  

Un+r=N Un---~K n+r (2) 

w h e r e  t h e  a v e r a g e  is t a k e n  k e e p i n g  H +  K c o n s t a n t .  In  
a n  a n a l o g o u s  w a y  S i m e r s k a  (1956) d e r i v e d  t h e  g e n e r a l  
e x p r e s s i o n  

UHI+H2+. . .+Hm 

= N m _  1 UH1Utt2... UH m ( H I + H 2 + . . . + H m )  • (3) 

F r o m  e q u a t i o n s  (1) a n d  (2) it  f o l l o w s  t h a t :  

S ( H ) S ( K ) S ( H - K )  
= + 1 fo r  l a rge  [UnUKU~_x[. (4) 

T a b l e  1. The number of  triplets H, K, H - K  and quartets H, K, L, H - K - L  as a function of  the magnitudes 
E4 = a3a7 3/2 I EoooEnExEn- r l and E4 = a3a7 a/e lEnEKELEn- ~- r.I respectively together with the relative per centages 

of  correct sign information 

Number  of 
Number  of quartets Number  of Number  of 

triplets Number  of Number  of Relative H, K, L quartets quartets Relative 
H, K, H -  K triplets with triplets with percentage of H - K - L  with S(H) with S(H) percentage of 

above the S(H)S(K) S(H)S(K) correct infor- above the S(K)S(L) S(K)S(L) correct infor- 
E4 value of S(H- K) S(H- K) mation of the E4 value of S(H- K-- L) S(H- K -  L) mation of the 

E4 value column 1 = + 1 = - 1 triplets column 1 = + 1 = - 1 quartets 
40"25 2 2 0 100 
37.50 3 3 0 100 
33.75 5 5 0 100 
30-00 12 12 0 100 
26"25 25 25 0 100 
22"50 49 49 0 100 
21"00 66 66 0 100 
19.50 91 91 0 100 
18.00 124 124 0 100 0 0 0 
16"50 174 174 0 100 1 1 0 100 
15.00 266 266 0 100 7 7 0 100 
14"25 318 318 0 100 10 10 0 100 
13.50 394 394 0 100 14 14 0 100 
12"75 481 481 0 100 23 23 0 100 
12.00 597 597 0 100 43 43 0 100 
11-25 771 766 5 99"4 74 74 0 100 
10.50 961 953 8 99"2 114 114 0 100 
9-75 1236 1224 12 99-0 192 189 3 98"4 
9.00 1597 1570 27 98.3 316 311 5 98"4 
8-25 2098 2047 51 97-6 502 492 10 98"0 
7.50 2782 2694 88 96"8 837 804 33 96"1 
6"75 3798 3633 165 95.7 1525 1441 84 94"5 
6"00 5299 4991 308 94.2 2848 2639 209 92"7 
5"25 7509 6883 626 91"7 5683 5123 560 90.1 

T a b l e  2. Number of  quartets H, K, L H - K - L  for groups of  different size containing the strongest reflexions 

The percentage of correct information is indicated for each group. 

Number  of 
quartets with 

Number  of the E4 > 5 within Total sum of 
strongest the group of N E4 within 

reflexions N reflexions this group 
10 0 0 
20 21 272 
30 91 1011 
40 212 2072 
50 471 3993 
60 834 6468 
70 1237 9050 
80 1839 12817 
90 2336 15880 

100 2825 18886 

Percentage of 
correct sign 
information 

Mean value of within the group 
E4 per quartet 

0 
13"0 100 
11.1 95.7 
9.8 93.3 
8.5 91-8 
7.8 91.8 
7.3 91.1 
7.O 90-8 
6.8 90.1 
6.7 89.7 
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From equation (3) more complex sign relationships 
can be found. Simerska showed that 

S ( H ) S ( K ) S ( L ) S ( H - K - L ) - -  + 1 (5) 

with a reliability proportional to the weight 

I f ~ U ~ f , f ~ _ ~ _ , l  

should be helpful in phase determining processes. 
In the program system of Stewart (1970) relations 

of type (5) are used, not, however, in the original form. 
Stewart derives the relation 

S(H)S(K)S(L)S(H-  K -  L)= + 1, (5a) 

a so-called relation of the second kind, from two triplet 
relationships (4): 

S ( H -  K)S(H)S(K) = + 1 ] 
(5b) S ( H - K ) S ( L ) S ( H - K - L ) =  + 1 

by elimination of S ( H - K ) .  Of course (5a) is less re- 
liable than any of the triplets (5b). Germain, Main & 
Woolfson (1970) report the use of phase relations of a 
similar kind, also derived from the original ~2 listing. 

In this paper the weights of the relations (5) and 
(5a) are combined into a strengthened quartet rela- 
tionship (SQR), which appears to be very useful in 
the first stage of a phase determination. 

Quartet relation 

From equation (3) with m = 3 the expression 
H + K + L  

Un+K+L=N 2 U.U~UL (6) 

is obtained. This leads to the sign relation 

S(H)S(K)S(L)S(H-  K -  L)=  + 1 (7) 

for large [EnErELEn-r-L[. The ordinary ~2 relation 
can be considered as a special case of (7) where EL= 
Eooo: 

S(H)S (K)S (H-K)=  + 1 (8) 

for large [EHEKEoooEH-KI. We have tested (7) and (8) 
for a recently solved structure of space group P2~/c 
with 56 carbon and oxygen atoms in the unit cell 
(Schenk, 1972a), and the results are summarized in 

Tables 1, 2 and 3. As could be expected, in both cases 
the percentage of failure3 follows the same trend with 

E4=a3~U3/21EnEKE,E~_K_,I (see Table 1). 

In the quartet list (7) most of the reliable sign rela- 
tions (large E4) are found within the group of 30 re- 
flexions of highest E. The reliable relations of type 8 
are spread over the strongest 300 refiexions. 

Quartet relationships of the second kind 

If  in a ~2 list two triplets with one reflexion in common 
are present: 

S(H)S(K)S(H-  K ) =  + 1 
with E~'r=lEoooEnErE~_Kla3a~ 3/z (9) 

and 
S(H)S(L)S (H-L)=  + 1 

with E~'L=IEoooE~ELEn_Lla3a~ 3/z, (10) 

then by elimination of S(H) a quartet relation of the 
second kind 

S ( K ) S ( H - K ) S ( L ) S ( H - L ) =  + 1 (11) 

is formed (Stewart, 1970). The reliability of equation 
(l l) is smaller than that of the original relations (9) 
and (10). If  relations (9) and (10) have probabilities 
o f / ' 1  and Pz respectively of being correct then the 
probability of (11) is given by 

and thus 
P3=ele ,+(1-e , )  (l-P2) (12) 

P3 < Px ,P2 . (13) 

P1 and P2 can be calculated using the well known 
probability formula: 

P + ( H ) = ½ + ½  tanh (a3a2a/2lERIErE~_r). (14) 

In our experience equation (13) often gives overesti- 
mates of the proper probabilities so that we prefer to 
work with weights based on E values. We use there- 
fore an approximation to (13): 

E~'~'L<E~ 'r , E~ "L (15) 

Table 3. Number of triplets H, K, H - K  for groups of different size containing the strongest reflexions 
Number of 

triplets within Percentage of 
Number of the the group of Total sum of correct sign 

strongest N reflexions E4 within Mean value of information 
reflexions N (E4 > 5.25) this group E4 per triplet within the group 

10 2 82 41-2 100 
20 11 375 34.1 100 
30 24 720 30.0 100 
40 42 1140 27.1 100 
50 63 1537 24-4 100 
60 94 2062 21-9 100 
70 131 2685 20.5 100 
80 184 3480 18.9 100 
90 233 4162 17.9 99.8 

100 298 5047 16.9 99-9 
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which is certainly fullfiled by the weights 

E~,~,,~=_En4,K [ELE.-I.I 
E~oo 

=l~ooEKEn-rELEn-Lltr3trz3/2. (16) 

Strengthened quartet relationships 

The pure quartet relationships (7) can be strengthened 
by the relations of the second kind. A quartet H, K, L 
and H - K - L  can be split into two triplets in the fol- 
lowing three ways: 

H - K  H K } (17) 
H - K  L H - K - L  

H - L  U L } (18) 
H - L  K H - K - L  

K+LK+L KH L H - K - L  }.  (19) 

The weight E~ of  the strengthened quartet relationship 
(SQR) is then given by the sum of  the weights of  (7), 
(17), (18) and (19)" 

EZ=aaa~_a/2 ( IEn-r[ + IEn-LI + IEK+LI + 1) 
E000 
x [EnErELEn- r -  LI • (20) 

The reliability of  these weights E~ can be judged by 
comparing the percentage failures as a function of  E~' 
with the percentage failures of the triplet relation as a 
function of E4=a3aff3/2lEoooEnEKEl~r_r[. For our test 
structure there is complete agreement (see Table 4). 
F rom Tables 1 and 4 it can be seen that the number  of 
reliable SQR's  is much greater than that of  the pure 
quartet relations. 

Unreliable SQR's 

Some quartet relationships are not invariant  under the 
symmetry operations. This happens when one of  the 
sums H - K ,  H - L ,  K +  L corresponds to a space group 
extinction. Then two different quartet relationships in- 
volving H, K, L and H - K - L  give opposite phase 
indications. 

An example in space group P21c: the refiexions 523, 
222, 111 and 2T0 form a quartet and S(222) = S(111) = 
S(210)= +1 .  Then S(523) S(222) S ( l l l )  S ( 2 ] 0 ) =  
+ l . . . ( a ) ,  but  also S(523) S(222) S(1] I )  S(210)=  
+ l . . . ( b ) .  Thus from (a) S ( 5 2 3 ) = - 1  and from (b) 
S(523) = + 1. 

The quartet  relations 

H, K, L H -  K -  L with L = 2~ H + 22K 

are not useful, as discussed previously for the case 
21=0, 22 = 1 (Schenk, 1972b). As pure quartet rela- 
tions they cannot  disturb the phase determination be- 
cause their number  is small and their E4 values are not 

Table 4. The number of SQR's  as a function of E~ together with the percentage of correct ilformation 

The percentage of correct triplet information (see Table l) is given as a reference value. 
From E~=8 the listing is complete, below this value terms are lacking. 

Number of Number of Number of Relative percentage 
strengthened quartets with quartets with of correct 

quartet relations S(H)S(K)S(L) S(H)S(K)S(L) information of the 
E~ value above the E4 value S(H-K-L)= + 1 S(H-K-L)= - 1 strengthened quartets 

40-25 
37-50 
33.75 
30.00 2 2 0 100 
26.25 9 9 0 100 
22.50 17 17 0 100 
21.00 29 29 0 100 
19.50 56 56 0 100 
18-00 88 88 0 100 
16.50 140 140 0 100 
15.00 259 259 0 100 
14.25 331 331 0 100 
13-50 435 435 0 100 
12.75 554 554 0 100 
12.00 738 735 3 99.6 
11-25 985 980 5 99-5 
10.50 1387 1377 10 99-3 
9.75 1989 1968 21 98.9 
9.00 2787 2742 45 98.4 
8.25 3833 3733 100 97-4 
7.50 5078 4892 186 96.3 
6.75 6108 5764 344 94.4 
6-00 6820 6252 568 91.7 
5.25 7118 6385 733 89-7 

Relative percentage 
of correct 

information of the 
triplets 

(see Table 1) 

100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
100 
99.4 
99.2 
99.0 
98-3 
97"6 
96-8 
95-7 
94-2 
91 "7 



H. S C H E N K  81 

large compared to those of  the triplet relations. After 
strengthening however, their E~ values may  be en- 
hanced and hence these SQR's  should preferably be 
avoided. This can easily be achieved by imposing an 
addit ional  condit ion for reliable SQR's :  

det ¢ 0 .  

Non-centrosymmetric structures 

For  non-centrosymmetr ic  structures phases can be ob- 
tained f rom the Y2 relation: 

~0n= ~ (21) 
IEnEKEn-KI 

K 

or f rom the even more useful tangent  formula  

r, IE E cE _ I sin 
K . (22) 

tan ~on= ~ IEt~EKEH-~[ cos (~0K+~0n-K) 

The corresponding expressions involving quartets of  
structure factors are easily found:  

E4 
~n = ~ L (23) Z :E, 

K L 

and 

~ E4 sin (~0K + q~z+ ~0n_K_L) 
t< L (24) 

tan ~o~- ~ ~ E4 COS(@K+q~L-[-~)H-K--L ) 
K L 

In (23) and (24) the triplets and SQR's can be em- 
ployed simultaneously by using, for SQR's: 

E4 = ~o3~f3/2 (IEn-KI + IEn-LlEooo + [EK+LI + 1) 

× IEnl IEKI IELI IEn-K-LI 

and. for triplets, relations 

E.=a3a  IE,,I IEKIEooolE -KI. 

For (23) and (24) refinement criteria can be found 
in the same way as for (21) and (22) (Schenk, 1972c). 
The criterion of  (23) is: 

C C Q 2 = ~  ~ ~ E4I--~OH+~OK+~OL+~OH--K--L[ 2 (25) 
H K L 

with 

-7c< -- ~a n + ~a K + q~ L + q~ a _ r _ L <_ ~Z 

and the criterion of  (24) is: 

CCQT2= Z Z Z E4 sin 2 • 
H K L 

(26) 

The forms of  (25) and (26) show that  all trivialities 
resulting from space-group symmetry (Schenk, 1972c) 
also occur with the quartet  relationships. 

In the centrosymmetric  case (23) and (24) reduce to 
the sign relat ionship:  

S ( H ) = S { ~ ,  ~ E 4 S ( K ) S ( L ) S ( H - K - L ) }  (27) 
K L 

with the refinement - (or consistency-) criterion" 

~ ~ E4 { 1 - S ( H ) S ( K ) S ( L ) S ( H - K - L ) } .  (28) 
H K L 

The use of  SQR's  

It is well known that  the triplet relations are very use- 
ful in order to find correct phases of  a large number  of  
reflexions on the basis of  a correct starting set. How- 
ever, often it appears to be very difficult to obtain such 
a starting set with triplet relations. The reason is that  
the reliable triplet relationships are distributed over a 
large group of  reflexions. 

By means  of  the SQR's  it should be easy to find a 
good starting set of  phases and symbolic phases. F rom 

Table 5. Number of  SQR's with E~ > 5 and E~ > 10 respectively for groups of  different size containing the strongest 
reflexions 

El>  5 E~> 10 
Number of 

Number of quartets 
Number quartets with 

of the with E~ > 5 Percentage E~ > 10 Percentage 
strongest within the Total sum of of correct within the of correct 
reflexions group of N E~ within Mean value sign group of N Sum total of Mean value sign 

N reflexions this group of E~<E~) information reflexions E~ of E~(E~) information 
10 0 0 0 0 
20 21 425 20.2 100.0 21 425 20-2 100 
30 91 1562 17.2 97.0 86 1516 17.6 99.2 
40 212 3145 14.8 95.2 178 2842 16.0 99.2 
50 471 5945 12.6 93.7 296 4410 14.9 99.0 
60 834 9494 11.4 93.6 398 5754 14-5 98.7 
70 1237 13349 10.8 93.1 476 6860 14.4 98.9 
30 1839 18953 10"3 92"8 583 8308 14-3 98-9 
90 2336 23254 10"0 92"2 661 9296 14"1 98"9 

100 2825 27566 9"8 91 "8 728 10174 14"0 99"0 

A C 29A - 6 
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Table 5 it can be seen that the strongest 50 reflexions 
of the test structure contain 296 reliable SQR's with 
E~ > 10, their mean value being 14.9. This means that 
the 50 phases are correlated by a highly overdeter- 
mined system of relations so that a reliable starting set 
can easily be constructed. The SQR's cannot be used 
for extending the set of phases to say 200 or 300, be- 
cause the new phases are linked by a small number of 
rather weak SQR's to the starting set. 

Thus the properties of triplet-relations and SQR's 
are complementary. By using the two types of relations 
at the same time the advantages of both can be com- 
bined. 

Practical procedure for structure determinations 

We have adopted the following procedure in our com- 
puter programs: 

1. Calculating triplet relations and SQR's. 
2. Convergence mapping (Germain, Main & Woolf- 

son, 1970) applied to the n strongest reflexions only 
with the following modifications: 
a. The reliability of a phase is estimated by 

K K L 
triplets SQR's 

b. If all E~' and E4 values contributing to an Rn 
are below a limit value (approximately 30% of 
the maximum E4) this RH is set equal to zero. 

c. No prior choice of origin-defining reflexions is 
made. 

3. The output reflexions of the convergence mapping 
form the starting group of phases. Some of them 
are used for the definition of the origin and other 
are given symbolic phases. 

4. Extension of the group of symbolically phased re- 
flexions. 

5. Finding the most reliable solution on the basis of 
the appropriate criterion (Schenk, 1972c). 

The method was applied to a structure in P21/c, for 
which previously only after two failures a proper start- 
ing set could be found. By the new method this start- 
ing set was obtained automatically. In another struc- 
ture determination, for which our former phasing 
process failed several times, a new starting set, found 
by means of the above procedure, lead to the correct 
solution. 

The author is indebted to Dr C. H. Stam, Mr W. 
Krieger and Mr W. van der Giesen for helpful discus- 
sions, and to Professor Dr C. H. MacGillavry ar.d Dr 
B. O. Loopstra for critical reading of the manuscript. 
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The Dependence of the Debye-Waller Temperature Factors on the Atomic Masses 

BY C. SCHERINGER 

Institut fi~r Kristallographie der Universitil't, Karlsruhe, Germany (BRD ) 

(Received 7 September 1972; accepted 9 September 1972) 

The question of how the Debye-Waller temperature factors depend on the atomic masses is discussed in 
terms of lattice dynamics. 

1. Introduction 

Recently Huiszoon & Groenewegen (1972) investigated 
whether or not the Debye-Waller factors depend on the 
atomic masses. We quote their result: ' . . .  a theorem 
will be derived which states that Debye-Waller B values 
of individual atoms in a crystal lattice do not depend 
on the atomic masses when the temperature of the crys- 
tal is above its Debye temperature'. The equations 
derived by Huiszoon & Groenewegen are correct; we 

believe, however, that their equations should be inter- 
preted in another manner. 

Huiszoon & Groenewegen (1972) base their inter- 
pretation on their equations (15) and (18). We quote 
equation (18) for reference as 

z z ~k kBT h2t~tk 
(U,(,)Uk(,))= U, - N ~ (L-1)'k(~) + 12kn----Tm~ 

i1 
h 4 

L,k(~,)+..., 1"> OD/2. (1) 720k3 T3m2 N T 


