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Likewise, the elimination of the noise of the refine-
- ment of the mean structure from the 4 matrix may
be performed in a similar manner as before.

The pseudosymmetry operator which gives high co-
variance between parameters need not always allow a
sensible selection of combination of parameters. An
example is the pseudosymmetry operators (3+x, »,
1-2), 3+x, y, +—2). A refinement procedure for a
crystal structure with these pseudosymmetry operators
is currently being investigated, and will be published
elsewhere.

We have seen earlier that a full-matrix solution tends
to overweight the changes in the ‘difference’ structure
whereas a block diagonal approach overweights the
changes in the ‘mean’ structure but underweights the
‘difference’ structure, and so other refinement proce-
dures may be considered.

As stated in the Introduction, the refinement of the
‘difference’ structure is only possible as (sin #)/4 in-
creases. Thus the simplest method to reduce covariance
between highly covarying parameters is to use high-
angle data or to weight data according to (sin 8)/A.
Similarly, if there is an index condition so that only
the ‘difference’ structure contributes to certain re-
flexions then the weight of these reflexions can be in-
creased.

A combination of a full-matrix approach and a
diagonal approach can be considered. This is simply
brought about by multiplying the diagonal elements
a;; of the A matrix by a constant, k,, greater than 1,
and the elements of the column matrix B by a constant
k,. The constant k, should be less than k,, otherwise
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the refinement of the ‘mean’ structure will be over-
weighted. A down weighting of the refinement of the
‘difference’ structure is brought about by a reduction
of the apparent covariance between parameters. The
shifts of highly covarying parameters are reduced
more than the shifts in parameters which are less co-
variant. A read-out/read-in interruption to the least-
squares refinement program prior to the inversion of
the A matrix allows any number of modifications to
be tested without re-evaluating the 4 matrix each time.

This final method has a lot to recommend it. Con-
sider our simple two-variable example again. The
equation

I/anAU1= 2{% + —g‘
becomes

k
T, V= 285' + % =ouf+ o2y

where
1—-0" =kt (1=9); k>1.

&’'/d varies from oo for 6=0to 1 for d=1. Also (2—0)/o
varies from oo for =0 to 1 for d=1, whereas w,/w;=
(2—9")/6’ varies from (k;+1)/(k,—1) for 6=0to 1 for
o=1.

Thus we have a built-in discrimination against those
parameters of the ‘difference’ structure which are least
accurately determined. If we choose k; as 1-4 say, then
w,/w; varies between 6 and 1. This procedure will also
work when a larger set of covarying variables is con-
sidered.

The Use of Phase Relationships between Quartets of Reflexions
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Phase relations between quartets of reflexions can be found either directly from a generalized Hughes
expression or by elimination of the phase of a reflexion common to two >, relationships. By combining
the information from both types, strengthened quartet relationships (SQR) can be constructed, which
are comparable to the 3, relations in reliability and number. Most of the reliable SQR’s involve the
strong reflexions only. The phases of these reflexions are related by a highly overdetermined system of
equations leading in a simple manner to a good starting set.

List of symbols

F(H) Structure factor of reflexion H
Ey, Normalized structure factor
Uy  Unitary structure factor

f Atomic scattering factor

g Scattering factor of the squared electron den-
sity of an atom

N Number of atoms in the unit cell

V Volume of the unit cell

S(H) The sign of reflexion H

On The phase of reflexion H
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Introduction

For structures containing but one kind of atom Sayre
(1952) derived the expression

g 1 , ,
?—F(H)— 5% ; F(HYF(H-H"). (1)

Hughes (1953) found the related formula

Unsx=N UgUg "X )

where the average is taken keeping H+ K constant. In
an analogous way Simerska (1956) derived the general
expression

UH1+H2+...+H,,,
7T N O
From equations (1) and (2) it follows that:

S(H)S(K)S(H-K)
= +1 for large |UyUgUy_gl . (4)

Table 1. The number of triplets H, K, H—K and quartets H, K, L, H— K— L as a function of the magnitudes
E,=0305%?% |EggoEyExEy_ x| and Ey= 030733 E4EE, Ey_x 1| respectively together with the relative percentages
of correct sign information

Number of .
Number of quartets Number of Number of
triplets Number of Number of Relative H,K, L quartets quartets Relative
H, K, H— K triplets with triplats with percentage of H—K-—L  with S(H) with S(H) percentage of
above the  S(H)S(K) S(H)S(K) correct infor- above the S(K)S(L)  S(K)S(L) correct infor-
E, value of S(H-K) S(H—-K) mation of the E, value of S(H—K—L)S(H— K— L) mation of the
E, value column 1 =+1 =-1 triplets column 1 =+1 =—1 quartets
40-25 2 2 0 100
37-50 3 3 0 100
33.75 5 5 0 100
30-00 12 12 0 100
26-25 25 25 0 100
22-50 49 49 0 100
21-00 66 66 0 100
19:50 91 91 0 100
18-00 124 124 0 100 0 0 0
16:50 174 174 0 100 1 1 0 100
15-00 266 266 0 100 7 7 0 100
14-25 318 318 0 100 10 10 0 100
13:50 394 394 0 100 14 14 0 100
12:75 481 481 0 100 23 23 0 100
12:00 597 597 0 100 43 43 0 100
11-25 771 766 5 994 74 74 0 100
10-50 961 953 8 99-2 114 114 0 100
9-75 1236 1224 12 99-0 192 189 3 98-4
9-00 1597 1570 27 98-3 316 311 5 984
8-25 2098 2047 51 97-6 502 492 10 98-0
7-50 2782 2694 88 96-8 837 804 33 96-1
675 3798 3633 165 95-7 1525 1441 84 94-5
6-00 5299 4991 308 942 2848 2639 209 927
525 7509 6883 . 626 91-7 5683 5123 560 90-1

Table 2. Number of quartets H, K, L H— K— L for groups of different size containing the strongest reflexions

The percentage of correct information is indicated for each group.

Number of
quartets with

Number of the E,>5 within

Total sum of

Percentage of
correct sign
information

strongest the group of N E, within Mean value of within the group
reflexions N reflexions this group E, per quartet
10 0 0 0
20 21 272 13:0 100
30 91 1011 111 957
40 212 2072 9-8 93-3
50 471 3993 85 91-8
60 834 6468 7-8 91-8
70 1237 9050 7-3 91-1
80 1839 12817 7-0 90-8
90 2336 15880 6-8 90-1
100 2825 18886 67 89-7
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From equation (3) more complex sign relationships
can be found. Simerska showed that

SH)SK)S(L)S(H—-K—-L)=+1
with a reliability proportional to the weight
IUHUkUlUﬁ—K—ﬂ

should be helpful in phase determining processes.

In the program system of Stewart (1970) relations
of type (5) are used, not, however, in the original form.
Stewart derives the relation

SH)S(K)S(L)S(H—K—L)=+1,  (5a)

a so-called relation of the second kind, from two triplet
relationships (4):

S(H—K)S(H)S(K)= +1 }

4

S(H=K)S(L)S(H-K—L)=+1 (55)
by elimination of S(H—K). Of course (5a) is less re-
liable than any of the triplets (5). Germain, Main &
Woolfson (1970) report the use of phase relations of a
similar kind, also derived from the original 3, listing.

In this paper the weights of the relations (5) and
(5a) are combined into a strengthened quartet rela-
tionship (SQR), which appears to be very useful in
the first stage of a phase determination.

Quartet relation
From equation (3) with m =3 the expression

H+K+L
UH+K+L=N2 UHUKUL

is obtained. This leads to the sign relation

S(H)S(K)S(L)S(H—K-L)=+1 ©)

for large |EyERE Ey_g_o|. The ordinary 5, relation

can be considered as a special case of (7) where E; =
Eqoo:

®)

for large |EyExEopoEy - x|. We have tested (7) and (8)
for a recently solved structure of space group P2,/c
with 56 carbon and oxygen atoms in the unit cell
(Schenk, 1972a), and the results are summarized in

(©6)

S(H)S(K)S(H—K)=+1
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Tables 1, 2 and 3. As could be expected, in both cases
the percentage of failures follows the same trend with

Ey=0307 3 EqE E Ey_k_ ;| (see Table 1).

In the quartet list (7) most of the reliable sign rela-
tions (large E,) are found within the group of 30 re-
flexions of highest E. The reliable relations of type 8
are spread over the strongest 300 reflexions.

Quartet rejationships of the second kind

Ifin a >, list two triplets with one reflexion in common
are present:

SH)S(K)S(H—K)=+1
with EY-¥=|EqEyExEy_kloso53*  (9)
and
S(H)S(L)S(H—L)= +1

with Ef' = |EyEyEL Ey_losa5 %2,  (10)

then by elimination of S(H) a quartet relation of the
second kind

S(K)S(H—K)S(L)S(H~L)= +1 an

is formed (Stewart, 1970). The reliability of equation
(11) is smaller than that of the original relations (9)
and (10). If relations (9) and (10) have probabilities
of P; and P, respectively of being correct then the
probability of (11) is given by

P3;=PP,+(1—P))(1-P,) (12)

(13)
P, and P, can be calculated using the well known
probability formula:

P.(H)=4%+1tanh (0307 ¥*|Ey4| ExEy _x) . (14)
In our experience equation (13) often gives overesti-
mates of the proper probabilities so that we prefer to

work with weights based on E values. We use there-
fore an approximation to (13):

and thus
P3< P, ,P,.

Ef-L<EK, Bt

(15)

Table 3. Number of triplets H, K, H— K for groups of different size containing the strongest reflexions

Number of
triplets within Percentage of
Number of the the group of Total sum of correct sign
strongest N reflexions E4 within Mean value of information
reflexions N (E4>5-25) this group E, per triplet within the group
10 2 82 41-2 100
20 i1 375 34-1 100
30 24 720 30-0 100
40 42 1140 27-1 100
50 63 1537 24-4 100
60 94 2062 21-9 100
70 131 2685 205 100
80 184 3480 189 100
90 233 4162 i7-9 99-8
100 298 5047 16-9 99-9
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which is certainly fullfiled by the weights

|ELEH-L|

EH,K,L_____EH,K it
¢ ¢ Eéoo
Ey

= -3/2
= E—EKEH—KELEH—L o305 /2,
000

(16)

Strengthened quartet relationships

The pure quartet relationships (7) can be strengthened
by the relations of the second kind. A quartet H, K, L
and H— K— L can be split into two triplets in the fol-
lowing three ways:

H-K H K

H-K L H—K—L} (7)
H-L H L

H-L K H—K—L} (18)
K+L H H-K-L

K+L K L } (19)

The weight E; of the strengthened quartet relationship
(SQR) is then given by the sum of the weights of (7),
(17), (18) and (19):

E=g305%? (IEH—K|+|EH—LI+1EK+L| " l)
Eqoo

X|EWEXE Ey_g-(]. (20)

The reliability of these weights E} can be judged by
comparing the percentage failures as a function of E}
with the percentage failures of the triplet relation as a
function of E,;=0;0; 3% EgeoEnExEy-|. For our test
structure there is complete agreement (see Table 4).
From Tables 1 and 4 it can be seen that the number of
reliable SQR’s is much greater than that of the pure
quartet relations.

Unreliable SQR’s

Some quartet relationships are not invariant under the
symmetry operations. This happens when one of the
sums H— K, H— L, K+ L corresponds to a space group
extinction. Then two different quartet relationships in-
volving H, K, L and H— K- L give opposite phase
indications.

An example in space group P2,c: the reflexions 523,
222, 111 and 270 form a quartet and S(222)=S(111)=
S(210)=+1. Then S(523) S(222) S(111) S(210)=
+1...(a), but also S(523) $(222) S(111) S(210)=
+1...(b). Thus from (a) S(523)=—1 and from (b)
S(523)=+1.

The quartet relations

H K,L H—-K—L with L=4iH+,K

are not useful, as discussed previously for the case
A,=0, 2,=1 (Schenk, 1972b). As pure quartet rela-
tions they cannot disturb the phase determination be-
cause their number is small and their E, values are not

Table 4. The number of SQR’s as a function of E¥ together with the percentage of correct information

The percentage of correct triplet information (see Table 1) is given as a reference vaiue.
From E}=8 the listing is complete, below this value terms are lacking.

Relative percentage

Number of Number of Number of Relative percentage of correct
strengthened quartets with quartets with of correct information of the
quartet relations S(H)S(K)S(L) S(H)S(K)S(L) information of the triplets
E7 value above the £, value S(H—K-—L)=+1 S(H—K-—L)=—1 strengthened quartets (see Table 1)
40-25
37-50
33-75
30-:00 2 2 0 100 100
2625 9 9 0 100 100
22-50 17 17 0 100 100
21-00 29 29 0 100 100
19-50 56 56 0 100 100
18-00 88 88 0 100 100
16-50 140 140 0 100 100
15-00 259 259 0 100 100
14-25 331 331 0 100 100
13-50 435 435 0 100 100
12-75 554 554 0 100 100
12-00 738 735 3 99-6 100
11:25 985 980 S 99-5 994
10-50 1387 1377 10 99-3 99-2
9-75 1989 1968 21 98-9 99-0
9-00 2787 2742 45 98-4 98-3
825 3833 3733 100 974 97-6
7-50 5078 4892 186 963 96-8
675 6108 5764 344 94-4 95-7
6-00 6820 6252 568 91-7 94-2
525 7118 6385 733 89-7 91-7
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large compared to those of the triplet relations. After
strengthening however, their E} values may be en-
hanced and hence these SQR’s should preferably be
avoided. This can easily be achieved by imposing an
additional condition for reliable SQR’s:

H
det K)#O.
L

Non-centrosymmetric structures

For non-centrosymmetric structures phases can be ob-
tained from the >, relation:

Z |EnExEy_k| (9 + @ -x)
K

o= 1)
! > |EnExEq_l
K
or from the even more useful tangent formula
2 |EqExEy_gl sin (px +¢u_x)
tan gy= (22)

I3
> |EyExEy | cos 0k +9Pu-8)
K

The corresponding expressions involving quartets of
structure factors are easily found:

; ; E, (px+oL+t9u_x-1)

225

Pu= (23)

and

ZZE4 sin (px+@L+@u-k-1)

tan gg= —

Z Z E,cos (px+@L+Pn-k- D @9

In (23) and (24) the triplets and SQR’s can be em-
ployed simultaneously by using, for SQR’s:

_ |Ey -kl +|Exu_ L|+[EK+L|
e 2
4= 030, Eono
X |Egyl |Ex| |EL| |Ey-k-1il

and. for triplets, relations
Ey=0307 " |Ey| | Ex| Eoool Eq - kl-

For (23) and (24) refinement criteria can be found
in the same way as for (21) and (22) (Schenk, 1972¢).
The criterion of (23) is:

CCQ,= Z Z > E|—outox+orton_x-l* (25

H K L
with
—A< =@t Pkt PLtPa-k-LST

and the criterion of (24) is:

CCQT,=> > > E,sin® H(—pu+9x+0r+0u_k-1) -
HX T
(26)

The forms of (25) and (26) show that all trivialities
resulting from space-group symmetry (Schenk, 1972¢)
also occur with the quartet relationships.

In the centrosymmetric case (23) and (24) reduce to
the sign relationship:

S(H)=S{_K§ §E4S(K)S(L)S(H—K—L)} 27)

with the refinement — (or consistency-) criterion:

g ; ; E, {1-S(H)S(K)S(L)S(H—K—-L)}. (28)

The use of SQR’s

It is well known that the triplet relations are very use-
ful in order to find correct phases of a large number of
reflexions on the basis of a correct starting set. How-
ever, often it appears to be very difficult to obtain such
a starting set with triplet relations. The reason is that
the reliable triplet relationships are distributed over a
large group of reflexions.

By means of the SQR’s it should be easy to find a
good starting set of phases and symbolic phases. From

Table 5. Number of SQR’s with E} > 5 and E}; > 10 respectively for groups of different size containing the strongest

reflexions
E;>5 E;>10
Number of
Number of quartets
Number quartets with
of the with E}>5 Percentage E}>10 Percentage
strongest  within the Total sum of of correct  within the of correct
reflexions group of N Ej within  Mean value sign group of N Sum total of Mean value sign
N reflexions this group  of Ej{E;) information reflexions E; of E;{E;) information
10 0 0 0 0
20 21 425 202 100-0 21 425 20-2 100
30 91 1562 172 97-0 86 1516 17-6 99-2
40 212 3145 14-8 95-2 178 2842 16:0 99-2
50 471 5945 12:6 93-7 296 4410 14-9 99-0
60 834 9494 11-4 93-6 398 5754 14-5 98-7
70 1237 13349 10-8 93-1 476 6860 14-4 98-9
80 1839 18953 10-3 92-8 583 8308 14-3 98-9
90 2336 23254 10-0 92-2 661 9296 14-1 98-9
100 2825 27566 9-8 91-8 728 10174 140 99-0

AC2A-6
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Table 5 it can be seen that the strongest 50 reflexions
of the test structure contain 296 reliable SQR’s with
E} > 10, their mean value being 14+9, This means that
the 50 phases are correlated by a highly overdeter-
mined system of relations so that a reliable starting set
can easily be constructed. The SQR’s cannot be used
for extending the set of phases to say 200 or 300, be-
cause the new phases are linked by a small number of
rather weak SQR’s to the starting set.

Thus the properties of triplet-relations and SQR’s
are complementary. By using the two types of relations
at the same time the advantages of both can be com-
bined.

Practical procedure for structure determinations

We have adopted the following procedure in our com-
puter programs:

1. Calculating triplet relations and SQR’s.

2. Convergence mapping (Germain, Main & Woolf-
son, 1970) applied to the # strongest reflexions only
with the following modifications:

a. The reliability of a phase is estimated by

RH=K2E§+; % E3.

triplets SQR’s

b. If all Ef and E, values contributing to an Ry
are below a limit value (approximately 30% of
the maximum E,) this Ry is set equal to zero.

c. No prior choice of origin-defining reflexions is
made.
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3. The output reflexions of the convergence mapping
form the starting group of phases. Some of them
are used for the definition of the origin and other
are given symbolic phases.

4. Extension of the group of symbolically phased re-
flexions.

5. Finding the most reliable solution on the basis of
the appropriate criterion (Schenk, 1972¢).

The method was applied to a structure in P2,/c, for
which previously only after two failures a proper start-
ing set could be found. By the new method this start-
ing set was obtained automatically. In another struc-
ture determination, for which our former phasing
process failed several times, a new starting set, found
by means of the above procedure, lead to the correct
solution.

The author is indebted to Dr C. H. Stam, Mr W.
Krieger and Mr W. van der Giesen for helpful discus-
sions, and to Professor Dr C. H. MacGillavry ar.d Dr
B. O. Loopstra for critical reading of the manuscript.
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The Dependence of the Debye-Waller Temperature Factors on the Atomic Masses
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The question of how the Debye-Waller temperature factors depend on the atomic masses is discussed in

terms of lattice dynamics.

1. Introduction

Recently Huiszoon & Groenewegen (1972) investigated
whether or not the Debye—Waller factors depend on the
atomic masses. We quote their result: ‘... a theorem
will be derived which states that Debye-Waller B values
of individual atoms in a crystal lattice do not depend
on the atomic masses when the temperature of the crys-
tal is above its Debye temperature’. The equations
derived by Huiszoon & Groenewegen are correct; we

believe, however, that their equations should be inter-
preted in another manner.

Huiszoon & Groenewegen (1972) base their inter-
pretation on their equations (15) and (18). We quote
equation (18) for reference as

o kgT 6
Ny (D = [Jik— B -1 f
(D)) =Upk= N .,Z (L7 Du) + 12kgTm,
4
h s T>0p/2. (1)

- (9
TR N 2 )+



