Likewise, the elimination of the noise of the refinement of the mean structure from the A matrix may be performed in a similar manner as before.

The pseudosymmetry operator which gives high covariance between parameters need not always allow a sensible selection of combination of parameters. An example is the pseudosymmetry operators $\left(\frac{1}{3}+x, y\right.$, $\left.\frac{1}{2}-z\right),\left(\frac{2}{3}+x, y, \frac{1}{2}-z\right)$. A refinement procedure for a crystal structure with these pseudosymmetry operators is currently being investigated, and will be published elsewhere.

We have seen earlier that a full-matrix solution tends to overweight the changes in the 'difference' structure whereas a block diagonal approach overweights the changes in the 'mean' structure but underweights the 'difference' structure, and so other refinement procedures may be considered.

As stated in the Introduction, the refinement of the 'difference' structure is only possible as $(\sin \theta) / \lambda$ increases. Thus the simplest method to reduce covariance between highly covarying parameters is to use highangle data or to weight data according to $(\sin \theta) / \lambda$. Similarly, if there is an index condition so that only the 'difference' structure contributes to certain reflexions then the weight of these reflexions can be increased.

A combination of a full-matrix approach and a diagonal approach can be considered. This is simply brought about by multiplying the diagonal elements $a_{i i}$ of the A matrix by a constant, k_{1}, greater than 1, and the elements of the column matrix B by a constant k_{2}. The constant k_{2} should be less than k_{1}, otherwise
the refinement of the 'mean' structure will be overweighted. A down weighting of the refinement of the 'difference' structure is brought about by a reduction of the apparent covariance between parameters. The shifts of highly covarying parameters are reduced more than the shifts in parameters which are less covariant. A read-out/read-in interruption to the leastsquares refinement program prior to the inversion of the A matrix allows any number of modifications to be tested without re-evaluating the A matrix each time.
This final method has a lot to recommend it. Consider our simple two-variable example again. The equation

$$
\sqrt{a_{11}} \Delta u_{1}=\frac{\beta}{2-\delta}+\frac{\gamma}{\delta}
$$

becomes

$$
\frac{k_{1}}{k_{2}} \sqrt{a_{11}} \Delta u_{1}=\frac{\beta}{2-\delta^{\prime}}+\frac{\gamma}{\delta^{\prime}}=\omega_{1} \beta+\omega_{2} \gamma
$$

where

$$
1-\delta^{\prime}=k_{1}^{-1}(1-\delta) ; \quad k_{1}>1
$$

δ^{\prime} / δ varies from ∞ for $\delta=0$ to 1 for $\delta=1$. Also $(2-\delta) / \delta$ varies from ∞ for $\delta=0$ to 1 for $\delta=1$, whereas $\omega_{2} / \omega_{1}=$ $\left(2-\delta^{\prime}\right) / \delta^{\prime}$ varies from $\left(k_{1}+1\right) /\left(k_{1}-1\right)$ for $\delta=0$ to 1 for $\delta=1$.
Thus we have a built-in discrimination against those parameters of the 'difference' structure which are least accurately determined. If we choose k_{1} as 1.4 say, then ω_{2} / ω_{1} varies between 6 and 1 . This procedure will also work when a larger set of covarying variables is considered.

The Use of Phase Relationships between Quartets of Reflexions

By H. Schenk
Laboratory for Crystallography, University of Amsterdam, Nieuwe Prinsengracht 126, Amsterdam, The Netherlands

(Received 24 July 1972; accepted 13 August 1972)
Phase relations between quartets of reflexions can be found either directly from a generalized Hughes expression or by elimination of the phase of a reflexion common to two Σ_{2} relationships. By combining the information from both types, strengthened quartet relationships (SQR) can be constructed, which are comparable to the Σ_{2} relations in reliability and number. Most of the reliable SQR's involve the strong reflexions only. The phases of these reflexions are related by a highly overdetermined system of equations leading in a simple manner to a good starting set.

List of symbols

$F(H)$ Structure factor of reflexion H
$E_{H} \quad$ Normalized structure factor
$U_{H} \quad$ Unitary structure factor
f Atomic scattering factor
$g \quad$ Scattering factor of the squared electron density of an atom
$N \quad$ Number of atoms in the unit cell
$V \quad$ Volume of the unit cell
$S(H)$ The sign of reflexion H
$\varphi_{H} \quad$ The phase of reflexion H

Introduction

For structures containing but one kind of atom Sayre (1952) derived the expression

$$
\begin{equation*}
\frac{g}{f} F(H)=\frac{1}{V} \sum_{H^{\prime}} F\left(H^{\prime}\right) F\left(H-H^{\prime}\right) \tag{1}
\end{equation*}
$$

Hughes (1953) found the related formula

$$
\begin{equation*}
U_{H+K}=N \quad{\overline{U_{H}} U_{K}}^{H+K} \tag{2}
\end{equation*}
$$

where the average is taken keeping $H+K$ constant. In an analogous way Simerska (1956) derived the general expression

$$
\begin{align*}
& U_{H_{1}+H_{2}+\ldots+H_{m}} \\
& \quad=N^{m-1} \overline{U_{H_{1}} U_{H_{2}} \ldots U_{H_{m}}}\left(H_{1}+H_{2}+\ldots+H_{m}\right) . \tag{3}
\end{align*}
$$

From equations (1) and (2) it follows that:

$$
\begin{align*}
& S(H) S(K) S(H-K) \\
& =+1 \text { for large }\left|U_{H} U_{K} U_{H-K}\right| \tag{4}
\end{align*}
$$

Table 1. The number of triplets $H, K, H-K$ and quartets $H, K, L, H-K-L$ as a function of the magnitudes $E_{4}=\sigma_{3} \sigma_{2}^{-3 / 2}\left|E_{000} E_{H} E_{K} E_{H-K}\right|$ and $E_{4}=\sigma_{3} \sigma_{2}^{-3 / 2}\left|E_{H} E_{K} E_{L} E_{H-K-L}\right|$ respectively together with the relative percentages of correct sign information

E_{4} value	Number of triplets $H, K, H-K$ above the E_{4} value of column 1	Number of triplets with $\begin{gathered} S(H) S(K) \\ S(H-K) \\ =+1 \end{gathered}$	Number of triplets with $\begin{gathered} S(H) S(K) \\ S(H-K) \\ =-1 \end{gathered}$	Relative percentage of correct information of the triplets	Number of quartets H, K, L $H-K-L$ above the E_{4} value of column 1	$\begin{gathered} \text { Number of } \\ \text { quartets } \\ \text { with } S(H) \\ S(K) S(L) \\ S(H-K-L) \\ =+1 \end{gathered}$	$\begin{aligned} & \text { Number of } \\ & \text { quartets } \\ & \text { with } S(H) \\ & S(K) S(L) \\ & S(H-K-L) \\ & =-1 \end{aligned}$	Relative percentage of correct information of the quartets
$40 \cdot 25$	2	2	0	100				
37.50	3	3	0	100				
33.75	5	5	0	100				
30.00	12	12	0	100				
$26 \cdot 25$	25	25	0	100				
22.50	49	49	0	100				
21.00	66	66	0	100				
19.50	91	91	0	100				
18.00	124	124	0	100	0	0	0	
$16 \cdot 50$	174	174	0	100	1	1	0	100
15.00	266	266	0	100	7	7	0	100
14.25	318	318	0	100	10	10	0	100
13.50	394	394	0	100	14	14	0	100
12.75	481	481	0	100	23	23	0	100
12.00	597	597	0	100	43	43	0	100
11.25	771	766	5	99.4	74	74	0	100
10.50	961	953	8	99.2	114	114	0	100
9.75	1236	1224	12	99.0	192	189		98.4
9.00	1597	1570	27	98.3	316	311	5	98.4
8.25	2098	2047	51	$97 \cdot 6$	502	492	10	98.0
$7 \cdot 50$	2782	2694	88	$96 \cdot 8$	837	804	33	$96 \cdot 1$
$6 \cdot 75$	3798	3633	165	$95 \cdot 7$	1525	1441	84	$94 \cdot 5$
6.00	5299	4991	308	$94 \cdot 2$	2848	2639	209	$92 \cdot 7$
$5 \cdot 25$	7509	6883	626	$91 \cdot 7$	5683	5123	560	$90 \cdot 1$

Table 2. Number of quartets $H, K, L H-K-L$ for groups of different size containing the strongest reflexions
The percentage of correct information is indicated for each group.

Number of the strongest reflexions N	Number of quartets with $E_{4}>5$ within the group of N reflexions	Total sum of E_{4} within this group	Mean value of E_{4} per quartet	Percentage of correct sign information within the group
10	0	0	0	
20	21	272	$13 \cdot 0$	100
30	91	1011	$11 \cdot 1$	$95 \cdot 7$
40	212	2072	$9 \cdot 8$	$93 \cdot 3$
50	471	3993	$8 \cdot 5$	$91 \cdot 8$
60	834	6468	$7 \cdot 8$	$91 \cdot 8$
70	1237	9050	$7 \cdot 3$	$91 \cdot 1$
80	1839	12817	$7 \cdot 0$	$90 \cdot 8$
90	2336	15880	$6 \cdot 8$	90.1
100	2825	18886	$6 \cdot 7$	$89 \cdot 7$

From equation (3) more complex sign relationships can be found. Simerska showed that

$$
\begin{equation*}
S(H) S(K) S(L) S(H-K-L)=+1 \tag{5}
\end{equation*}
$$

with a reliability proportional to the weight

$$
\left|U_{H} U_{K} U_{L} U_{H-K-L}\right|
$$

should be helpful in phase determining processes.
In the program system of Stewart (1970) relations of type (5) are used, not, however, in the original form. Stewart derives the relation

$$
\begin{equation*}
S(H) S(K) S(L) S(H-K-L)=+1 \tag{5a}
\end{equation*}
$$

a so-called relation of the second kind, from two triplet relationships (4):

$$
\left.\begin{array}{l}
S(H-K) S(H) S(K)=+1 \tag{5b}\\
S(H-K) S(L) S(H-K-L)=+1
\end{array}\right\}
$$

by elimination of $S(H-K)$. Of course (5a) is less reliable than any of the triplets ($5 b$). Germain, Main \& Woolfson (1970) report the use of phase relations of a similar kind, also derived from the original Σ_{2} listing.

In this paper the weights of the relations (5) and (5a) are combined into a strengthened quartet relationship (SQR), which appears to be very useful in the first stage of a phase determination.

Quartet relation

From equation (3) with $m=3$ the expression

$$
\begin{equation*}
U_{H+K+L}=N^{2}{\overline{U_{H} U_{K} U_{L}}}^{H+K+L} \tag{6}
\end{equation*}
$$

is obtained. This leads to the sign relation

$$
\begin{equation*}
S(H) S(K) S(L) S(H-K-L)=+1 \tag{7}
\end{equation*}
$$

for large $\left|E_{H} E_{K} E_{L} E_{H-K-L}\right|$. The ordinary \sum_{2} relation can be considered as a special case of (7) where $E_{L}=$ E_{000} :

$$
\begin{equation*}
S(H) S(K) S(H-K)=+1 \tag{8}
\end{equation*}
$$

for large $\left|E_{H} E_{K} E_{000} E_{H-K}\right|$. We have tested (7) and (8) for a recently solved structure of space group $P 2_{1} / c$ with 56 carbon and oxygen atoms in the unit cell (Schenk, 1972a), and the results are summarized in

Tables 1, 2 and 3. As could be expected, in both cases the percentage of failurss follows the same trend with

$$
E_{4}=\sigma_{3} \sigma_{2}^{-3 / 2}\left|E_{H} E_{K} E_{L} E_{H-K-L}\right| \text { (see Table 1). }
$$

In the quartet list (7) most of the reliable sign relations (large E_{4}) are found within the group of 30 reflexions of highest E. The reliable relations of type 8 are spread over the strongest 300 reflexions.

Quartet relationships of the second kind

If in a \sum_{2} list two triplets with one reflexion in common are present:

$$
\begin{align*}
S(H) S(K) S(H-K) & =+1 \\
\quad \text { with } E_{4}^{H \cdot K} & =\left|E_{000} E_{H} E_{K} E_{H-K}\right| \sigma_{3} \sigma_{2}^{-3 / 2} \tag{9}
\end{align*}
$$

and

$$
\begin{align*}
S(H) S(L) S(H-L) & =+1 \\
\text { with } E_{4}^{H, L} & =\left|E_{000} E_{H} E_{L} E_{H-L}\right| \sigma_{3} \sigma_{2}^{-3 / 2} \tag{10}
\end{align*}
$$

then by elimination of $S(H)$ a quartet relation of the second kind

$$
\begin{equation*}
S(K) S(H-K) S(L) S(H-L)=+1 \tag{11}
\end{equation*}
$$

is formed (Stewart, 1970). The reliability of equation (11) is smaller than that of the original relations (9) and (10). If relations (9) and (10) have probabilities of P_{1} and P_{2} respectively of being correct then the probability of (11) is given by

$$
\begin{equation*}
P_{3}=P_{1} P_{2}+\left(1-P_{1}\right)\left(1-P_{2}\right) \tag{12}
\end{equation*}
$$

and thus

$$
\begin{equation*}
P_{3}<P_{1}, P_{2} . \tag{13}
\end{equation*}
$$

P_{1} and P_{2} can be calculated using the well known probability formula:

$$
\begin{equation*}
P_{+}(H)=\frac{1}{2}+\frac{1}{2} \tanh \left(\sigma_{3} \sigma_{2}^{-3 / 2}\left|E_{H}\right| E_{K} E_{H-K}\right) . \tag{14}
\end{equation*}
$$

In our experience equation (13) often gives overestimates of the proper probabilities so that we prefer to work with weights based on E values. We use therefore an approximation to (13):

$$
\begin{equation*}
E_{4}^{H, K, L}<E_{4}^{H, K}, \quad E_{4}^{H, L} \tag{15}
\end{equation*}
$$

Table 3. Number of triplets $H, K, H-K$ for groups of different size containing the strongest reflexions
$\left.\begin{array}{ccccc}\begin{array}{c}\text { Number of the } \\ \text { strongest }\end{array} & \begin{array}{c}\text { Number of } \\ \text { triplets within } \\ \text { the group of } \\ \text { reflexions } N\end{array} & \begin{array}{c}\text { reflexions } \\ \left(E_{4}>5 \cdot 25\right)\end{array} & \begin{array}{c}\text { Total sum of } \\ E_{4} \text { within } \\ \text { this group }\end{array} & \begin{array}{c}\text { Mean value of } \\ E_{4} \text { per triplet }\end{array}\end{array} \begin{array}{c}\text { Percentage of } \\ \text { correct sign } \\ \text { information } \\ \text { within the group }\end{array}\right]$
which is certainly fullfiled by the weights

$$
\begin{align*}
E_{4}^{H, K, L}= & E_{4}^{H, K} \frac{\left|E_{L} E_{H-L}\right|}{E_{000}^{2}} \\
& =\left|\frac{E_{H}}{E_{000}} E_{K} E_{H-K} E_{L} E_{H-L}\right| \sigma_{3} \sigma_{2}^{-3 / 2} . \tag{16}
\end{align*}
$$

Strengthened quartet relationships

The pure quartet relationships (7) can be strengthened by the relations of the second kind. A quartet H, K, L and $H-K-L$ can be split into two triplets in the following three ways:

$$
\left.\begin{array}{lll}
H-K & H & K \\
H-K & L & H-K-L
\end{array}\right\}
$$

The weight E_{4}^{*} of the strengthened quartet relationship (SQR) is then given by the sum of the weights of (7), (17), (18) and (19):

$$
\begin{array}{r}
E_{4}^{*}=\sigma_{3} \sigma_{2}^{-3 / 2}\left(\begin{array}{r}
\left|E_{H-K}\right|+\left|E_{H-L}\right|+\left|E_{K+L}\right| \\
E_{000} \\
\\
\times\left|E_{H} E_{K} E_{L} E_{H-K-L}\right| .
\end{array}\right.
\end{array}
$$

The reliability of these weights E_{4}^{*} can be judged by comparing the percentage failures as a function of E_{4}^{*} with the percentage failures of the triplet relation as a function of $E_{4}=\sigma_{3} \sigma_{2}^{-3 / 2}\left|E_{000} E_{H} E_{K} E_{H-K}\right|$. For our test structure there is complete agreement (see Table 4). From Tables 1 and 4 it can be seen that the number of reliable SQR's is much greater than that of the pure quartet relations.

Unreliable SQR's

Some quartet relationships are not invariant under the symmetry operations. This happens when one of the sums $H-K, H-L, K+L$ corresponds to a space group extinction. Then two different quartet relationships involving H, K, L and $H-K-L$ give opposite phase indications.
An example in space group $P 2_{1} c$: the reflexions 523, 222,111 and $2 \overline{1} 0$ form a quartet and $S(222)=S(111)=$ $S(210)=+1$. Then $S(523) S(222) S(111) S(2 \overline{1} 0)=$ $+1 \ldots(a)$, but also $S(523) S(222) S(111) S(210)=$ $+1 \ldots(b)$. Thus from (a) $S(523)=-1$ and from (b) $S(523)=+1$.
The quartet relations

$$
H, K, L H-K-L \quad \text { with } \quad L=\lambda_{1} H+\lambda_{2} K
$$

are not useful, as discussed previously for the case $\lambda_{1}=0, \lambda_{2}=1$ (Schenk, 1972b). As pure quartet relations they cannot disturb the phase determination because their number is small and their E_{4} values are not

Table 4. The number of SQR's as a function of E_{4}^{*} together with the percentage of correct information
The percentage of correct triplet information (see Table 1) is given as a reference vaiue. From $E_{4}^{*}=8$ the listing is complete, below this value terms are lacking.
$\left.\begin{array}{ccccc} & \begin{array}{c}\text { Number of } \\ \text { strengthened } \\ \text { quartet relations }\end{array} & \begin{array}{c}\text { Number of } \\ \text { quartets with } \\ S(H) S(K) S(L)\end{array} & \begin{array}{c}\text { Number of } \\ \text { quartets with } \\ S(H) S(K) S(L)\end{array} & \begin{array}{c}\text { Relative percentage } \\ \text { of correct } \\ \text { information of the } \\ E_{4}^{*} \text { value }\end{array} \\ \begin{array}{c}\text { Relative percentage } \\ \text { of correct }\end{array} \\ 40 \cdot 25 & & & & \\ \text { information of the } \\ \text { triplets }\end{array}\right)$
large compared to those of the triplet relations. After strengthening however, their E_{4}^{*} values may be enhanced and hence these SQR's should preferably be avoided. This can easily be achieved by imposing an additional condition for reliable SQR's:

$$
\operatorname{det}\left(\begin{array}{l}
H \\
K \\
L
\end{array}\right) \neq 0 .
$$

Non-centrosymmetric structures

For non-centrosymmetric structures phases can be obtained from the Σ_{2} relation:

$$
\begin{equation*}
\varphi_{H}=\frac{\sum_{K}\left|E_{H} E_{K} E_{H-K}\right|\left(\varphi_{K}+\varphi_{H-K}\right)}{\sum_{K}\left|E_{H} E_{K} E_{H-K}\right|} \tag{21}
\end{equation*}
$$

or from the even more useful tangent formula

$$
\begin{equation*}
\tan \varphi_{H}=\frac{\sum_{K}\left|E_{H} E_{K} E_{H-K}\right| \sin \left(\varphi_{K}+\varphi_{H-K}\right)}{\sum_{K}\left|E_{H} E_{K} E_{H-K}\right| \cos \left(\varphi_{K}+\varphi_{H-K}\right)} \tag{22}
\end{equation*}
$$

The corresponding expressions involving quartets of structure factors are easily found:

$$
\begin{equation*}
\varphi_{H}=\frac{\sum_{K} \sum_{L} E_{4}\left(\varphi_{K}+\varphi_{L}+\varphi_{H-K-L}\right)}{\sum_{K} \sum_{L} E_{4}} \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
\tan \varphi_{H}=\frac{\sum_{K} \sum_{L} E_{4} \sin \left(\varphi_{K}+\varphi_{L}+\varphi_{H-K-L}\right)}{\sum_{K} \sum_{L} E_{4} \cos \left(\varphi_{K}+\varphi_{L}+\varphi_{H-K-L}\right)} . \tag{24}
\end{equation*}
$$

In (23) and (24) the triplets and SQR's can be employed simultaneously by using, for SQR's:

$$
\begin{aligned}
E_{4}=\varphi_{3} \varphi_{2}^{-3 / 2}\left(\frac{\left|E_{H-K}\right|+\left|E_{H-L}\right|+\left|E_{K+L}\right|}{}+1\right) \\
E_{000} \\
\times\left|E_{H}\right|\left|E_{K}\right|\left|E_{L}\right|\left|E_{H-K-L}\right|
\end{aligned}
$$

and for triplets, relations

$$
E_{4}=\sigma_{3} \sigma_{2}^{-3 / 2}\left|E_{H}\right|\left|E_{K}\right| E_{000}\left|E_{H-K}\right|
$$

For (23) and (24) refinement criteria can be found in the same way as for (21) and (22) (Schenk, 1972c). The criterion of (23) is:

$$
\begin{equation*}
\mathrm{CCQ}_{2}=\sum_{H} \sum_{K} \sum_{L} E_{4}\left|-\varphi_{H}+\varphi_{K}+\varphi_{L}+\varphi_{H-K-L}\right|^{2} \tag{25}
\end{equation*}
$$

with

$$
-\pi<-\varphi_{H}+\varphi_{K}+\varphi_{L}+\varphi_{H-K-L} \leq \pi
$$

and the criterion of (24) is:
$\mathrm{CCQT}_{2}=\sum_{H} \sum_{K} \sum_{L} E_{4} \sin ^{2} \frac{1}{2}\left(-\varphi_{H}+\varphi_{K}+\varphi_{L}+\varphi_{H-K-L}\right)$.
The forms of (25) and (26) show that all trivialities resulting from space-group symmetry (Schenk, 1972c) also occur with the quartet relationships.
In the centrosymmetric case (23) and (24) reduce to the sign relationship:

$$
\begin{equation*}
S(H)=S\left\{\sum_{K} \sum_{L} E_{4} S(K) S(L) S(H-K-L)\right\} \tag{27}
\end{equation*}
$$

with the refinement - (or consistency-) criterion:

$$
\begin{equation*}
\sum_{H} \sum_{K} \sum_{L} E_{4}\{1-S(H) S(K) S(L) S(H-K-L)\} \tag{28}
\end{equation*}
$$

The use of SQR's

It is well known that the triplet relations are very useful in order to find correct phases of a large number of reflexions on the basis of a correct starting set. However, often it appears to be very difficult to obtain such a starting set with triplet relations. The reason is that the reliable triplet relationships are distributed over a large group of reflexions.
By means of the SQR's it should be easy to find a good starting set of phases and symbolic phases. From

Table 5. Number of SQR 's with $E_{4}^{*}>5$ and $E_{4}^{*}>10$ respectively for groups of different size containing the strongest reflexions

Table 5 it can be seen that the strongest 50 reflexions of the test structure contain 296 reliable SQR's with $E_{4}^{*}>10$, their mean value being $14 \cdot 9$. This means that the 50 phases are correlated by a highly overdetermined system of relations so that a reliable starting set can easily be constructed. The SQR's cannot be used for extending the set of phases to say 200 or 300 , because the new phases are linked by a small number of rather weak SQR's to the starting set.

Thus the properties of triplet-relations and SQR's are complementary. By using the two types of relations at the same time the advantages of both can be combined.

Practical procedure for structure determinations

We have adopted the following procedure in our computer programs:

1. Calculating triplet relations and SQR's.
2. Convergence mapping (Germain, Main \& Woolfson, 1970) applied to the n strongest reflexions only with the following modifications:
a. The reliability of a phase is estimated by

$$
R_{H}=\sum_{\substack{K \\ \text { triplets }}} E_{4}^{2}+\sum_{\substack{K \\ \text { SQR's }}} \sum_{L} E_{4}^{* 2} .
$$

b. If all E_{4}^{*} and E_{4} values contributing to an R_{H} are below a limit value (approximately 30% of the maximum E_{4}) this R_{H} is set equal to zero.
c. No prior choice of origin-defining reflexions is made.
3. The output reflexions of the convergence mapping form the starting group of phases. Some of them are used for the definition of the origin and other are given symbolic phases.
4. Extension of the group of symbolically phased reflexions.
5. Finding the most reliable solution on the basis of the appropriate criterion (Schenk, 1972c).

The method was applied to a structure in $P 2_{1} / c$, for which previously only after two failures a proper starting set could be found. By the new method this starting set was obtained automatically. In another structure determination, for which our former phasing process failed several times, a new starting set, found by means of the above procedure, lead to the correct solution.

The author is indebted to Dr C. H. Stam, Mr W. Krieger and Mr W. van der Giesen for helpful discussions, and to Professor Dr C. H. MacGillavry ard Dr B. O. Loopstra for critical reading of the manuscript.

References

Germain, G., Main, P. \& Woolfson, M. M. (1970). Acta Cryst. B26, 274-285.
Hughes, E. W. (1953). Acta Cryst. 6, 871.
Sayre, D. (1952). Acta Cryst. 5, 60-65.
Schenk, H. (1972a). Cryst. Struct. Commun. 1, 143-146. Schenk, H. (1972b). To be published.
Schenk, H. (1972c). Acta Cryst. A 28, 412-422.
Simerska, M., (1956). Czech. J. Phys. 6, 1-7.
Stewart, J. M. (1970). Crystallographic Computing, pp. 71-74. Edited by F. R. Ahmed. Copenhagen: Munksgaard.

The Dependence of the Debye-Waller Temperature Factors on the Atomic Masses

By C.SCHERINGER
Institut für Kristallographie der Universität, Karlsruhe, Germany (BRD)

(Received 7 September 1972; accepted 9 September 1972)

Abstract

The question of how the Debye-Waller temperature factors depend on the atomic masses is discussed in

 terms of lattice dynamics.
1. Introduction

Recently Huiszoon \& Groenewegen (1972) investigated whether or not the Debye-Waller factors depend on the atomic masses. We quote their result: ' . . . a theorem will be derived which states that Debye-Waller B values of individual atoms in a crystal lattice do not depend on the atomic masses when the temperature of the crystal is above its Debye temperature'. The equations derived by Huiszoon \& Groenewegen are correct; we
believe, however, that their equations should be interpreted in another manner.

Huiszoon \& Groenewegen (1972) base their interpretation on their equations (15) and (18). We quote equation (18) for reference as

$$
\begin{gather*}
\left\langle u_{i}\binom{l}{r} u_{k}\binom{l}{r}\right\rangle=U_{r}^{i k}=\frac{k_{B} T}{N} \sum_{\mathbf{q}}\left(L^{-1}\right)_{t k}\left(\begin{array}{l}
\mathrm{q}
\end{array}\right)+\frac{\hbar^{2} \delta_{i k}}{12 k_{B} T m_{r}} \\
\quad-\frac{\hbar^{4}}{720 k_{B}^{3} T^{3} m_{r}^{2}} \bar{N} \sum_{\mathbf{q}} L_{i k}\left(\begin{array}{rrr}
(0)
\end{array}\right)+\ldots, T>\Theta_{D} / 2 . \tag{1}
\end{gather*}
$$

